

ETAROB: an Autonomous Agricultural Robot for Weed Control

Stephan Kallweit¹ and Josef Franko²

1: FH Aachen, MASCOR Institute, kallweit@fh-aachen.de

2: AI.Land, franko@a-i.land

AgroInno Conference 29. Juni 2021

AACHEN IVERSITY OF APPLIED SCIENCE

Mobile Robotics is one of the most promising future technologies

Autonomous mobile robots enable a large number of applications.

Mowers

Drones

Humanoid robots

The use of open-source software and hardware generates faster development cycles.

Mobile Robotics is one of the most promising future technologies

Today's farmers face major challenges in a global market:

- Shortage of skilled farm workers
- Prohibition of chemicals
- Electrification of agriculture machinery
- Automation
- Digitization

From the idea to the autonomous field robot ETAROB

The project started in 2017 with a group of robotic enthusiast.

Josef Franko

Heiko Engemann

Enno Dülberg

APPLIED SCIENCE

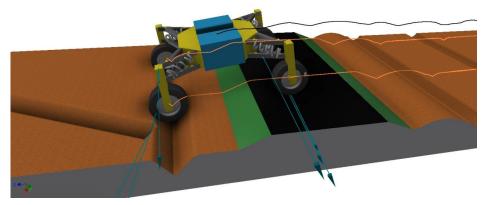
AACHEN

1st Generation (2017)

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

2nd Generation

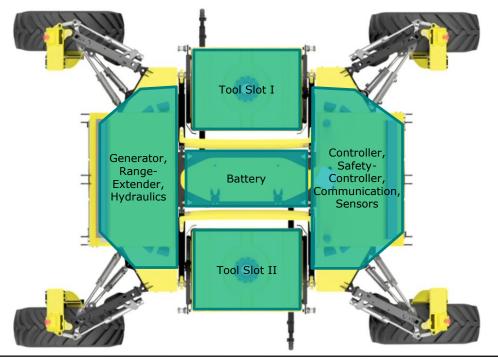
3rd Generation (2019)



Basic challenges for an autonomous agriculture robot

An agriculture robot is different to industrial mobile robotics.

- Precise localization
- Path following and planning
- Safety
- Robustness
- High operational readiness



Mechanical design of the ETAROB

C-Form **Enlarged-Form** H-Form

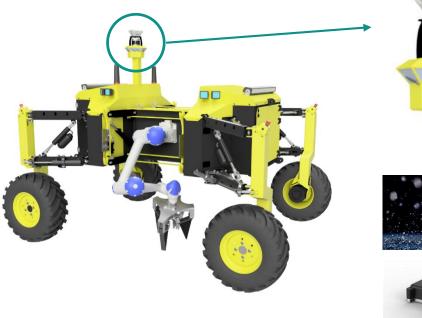
Mechanical design of the ETAROB

The modular concept of ETAROB.

25. Juni 2021 | 7

Mechanical design of the ETAROB

General technical specifications of the ETAROB:

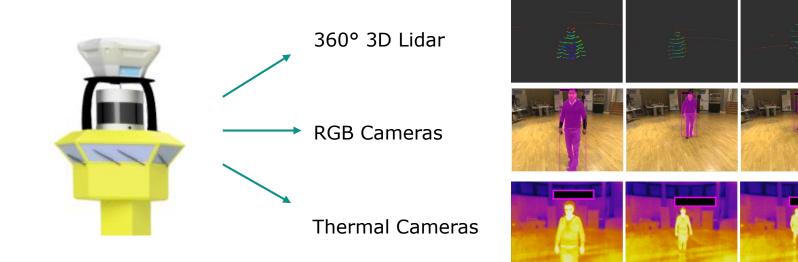

- Hybrid Electric
 - 4 x 800NM
 - 24 Hours operation time
- 4 Wheel Steering
 - Side-Drive
 - On Spot Turning
- 1000 kg Payload
 - 950 kg Robot Weight

Workspace monitoring as a combination of hard-safety and soft-safety components

Safety concept must be precise and reliable.

Soft-Safety:

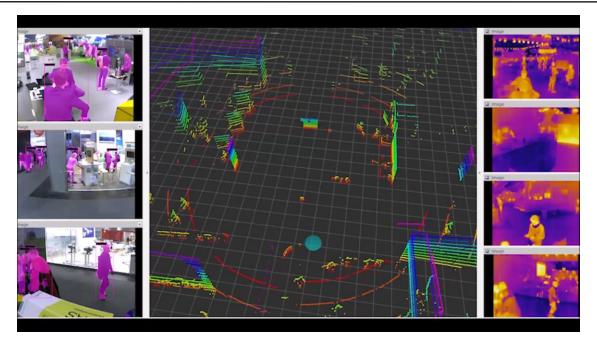
The multi-layer sensor concept detects obstacles, especially animals and humans, under different environmental parameters.


Hard-Safety:

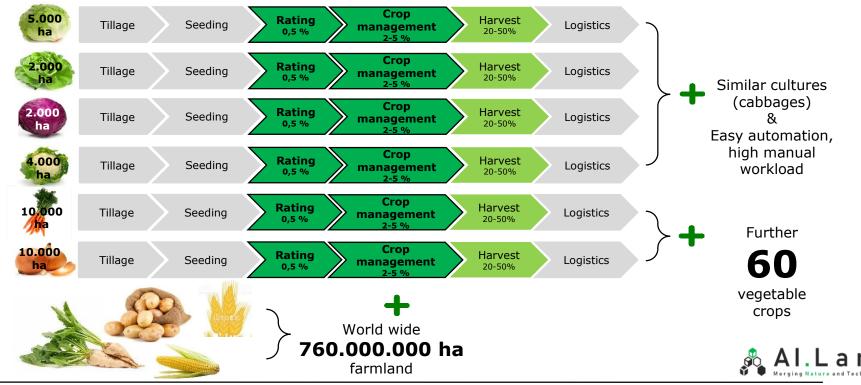
The functional safety of the Etarob is guaranteed by the use of proven safety sensor technology.

APPLIED SCIENCE

Workspace monitoring as a combination of hard-safety and soft-safety components



The concept combines the strengths of the different sensor types and thus compensates for the weaknesses.


25. Juni 2021 | 10

Workspace monitoring as a combination of hard-safety and soft-safety components

Intelligent workspace monitoring enables the robot system to perceive and interpret its complex environment and act accordingly.

The value chain in agriculture

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

25. Juni 2021 | 12

The true challenge is the process control

Autonomous agriculture robots combine two sub domains.

H AACHEN INIVERSITY OF APPLIED SCIENCES

Autonomous navigation in agriculture, not as simple as expected

GPS-based lane assistant can be as simple as a line follower, but ...

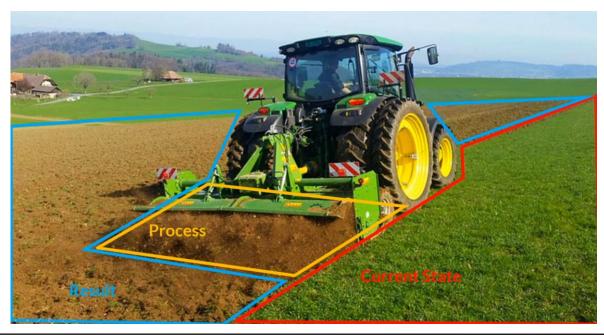
- Robust localization:
 - Global GNSS based localization is improved by adding local features
 - Multidata sensor fusion approach
- Reliable safety concept:
 - Detection of obstacles under different environmental parameters
- Path planning
 - Active collision avoidance through bypassing
 - Autonomous approach of service points

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

25. Juni 2021 | 15

The true challenge is the process control

Artificial intelligence is a promising technique to monitor the processes under different environmental parameters.



© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

25. Juni 2021 | 16

The true challenge is the process control

Artificial intelligence is a promising technique to monitor the processes under different environmental parameters.

Plant detection and segmentation based on deep learning

Highly detailed 3D models of crop and weed plants.

Plant detection and segmentation based on deep learning

Virtual worlds generated by CGI rendering software, enables the automated change of environmental parameters.

- Plant modification:
 - Position and orientation
 - Scaling
 - Vegetation stage
- Soil structure:
 - Various objects
 - Reflection
- Environment:
 - Daytime
 - Weather
 - Ray tracing

3D PLANT MODELS IN VIRTUAL FIELD

FAST TRAINING DATA **GENERATION**

Merging Nature and Technology.

Bundesanstalt für

OF APPLIED SCIENCE